Главная · Земледелие · Модель звена управления имитационный менеджмент. Моделирование в управлении. Побудительные причины моделирования процессов

Модель звена управления имитационный менеджмент. Моделирование в управлении. Побудительные причины моделирования процессов

Модель (от лат. modulus – мера, образец) – это копия или аналог изучаемого процесса или явления, отображающая существенные свойства этого процесса или явления с точки зрения цели исследования.

Моделирование применительно к менеджменту предусматривает исследование процессов и явлений, относительно которых принимаются управленческие решения, путем построения и изучения их моделей. Необходимость моделирования обусловлена целым рядом причин: сложностью многих организационных структур, невозможностью проведения экспериментов в реальной жизни и ориентацией на будущее.

Сложность многих организационных структур требует упрощения реальности при помощи моделей, повышая тем самым возможности человека принимать правильные решения.

Невозможность проведения экспериментов в реальной жизни тоже требует применения моделирования, так как прежде чем вкладывать средства в производство новых продуктов, необходимо обосновать возможность выпуска этих продуктов, возможный спрос на них и др. Например, прежде чем выбрать место для строительства нового автомобильного завода, надо учесть возможную обеспеченность его рабочей силой, связи со смежными предприятиями, транспортировку готовой продукции и т.п. Было бы абсурдно решать эти проблемы эмпирически, построив на каждом возможном месте по заводу.

Ориентация на будущее осложняется тем, что будущее нельзя наблюдать, но его можно моделировать в различных вариантах и рассматривать применительно к ним альтернативные варианты решений.

В менеджменте принято выделять физические ("портретные"), аналоговые и математические модели.

Физические ("портретные" ) модели – это уменьшенные или увеличенные копии исследуемых объектов или систем, относительно которых предстоит принимать решения. Например, макет будущего предприятия, чертеж проектируемого здания и т.п.

Аналоговые модели представляют исследуемый объект аналогом, который отличается от этого объекта внешне, но отражает какие-то существенные тенденции, присущие объекту исследования. Например, график, отражающий динамику товарооборота розничной торговой фирмы, схема организационной структуры управления и т.п.

Но самое широкое распространение в менеджменте получили математические модели. Математическая модель объекта – его отображение в виде совокупности уравнений, неравенств, логических отношений, объединяющее группы отношений элементов модели.

Изучение модели, во-первых, позволяет получить новое знание об объекте планирования; во-вторых , дает возможность выбирать оптимальные решения применительно к различным ситуациям.

Математическое моделирование применяют в тех случаях, когда управленческое решение принимается на основе обширной цифровой информации, которая может быть легко формализована, а цель может быть задана определенным числом.

Основными этапами оптимизации управленческого решения с помощью математических методов являются.

  • 1. Постановка задачи.
  • 2. Выбор критерия эффективности, который должен выражаться однозначно, например определенным числом, и отражать меру соответствия результатов решения поставленной цели.
  • 3. Анализ и измерение переменных величин (факторов), влияющих на величину критерия эффективности.
  • 5. Математическое решение модели.
  • 6. Логическая и экспериментальная проверка модели и полученного с ее помощью решения.
  • 7. Разработка рекомендаций по практическому применению полученных результатов.

Математическое моделирование применительно к принятию управленческих решений позволяет описать исследуемый объект математическими средствами, т.е. построить математическую модель данного объекта, просчитать эту модель на компьютере и выбрать оптимальное решение.

При построении математической модели осуществляется перенос знаний об объекте на модель. Затем строится математическая модель объекта, которая решается математическими средствами. После чего могут быть получены новые сведения о модели, которые переносятся на объект. И, в конечном счете, новые сведения об объекте подвергаются верификации. Алгоритм построения математической модели представлен на рис. 4.3.

Рис. 4.3.

Применение математического моделирования позволяет:

  • выделить и описать наиболее важные, существенные связи экономических переменных и объектов, что имеет принципиальный характер;
  • из четко сформулированных исходных данных и соотношений можно получать выводы, адекватные изучаемому объекту;
  • получать новые знания об объекте, например, оценивать форму и параметры зависимостей его переменных, в наибольшей степени соответствующие имеющимся наблюдениям;
  • точно и компактно излагать положения экономической теории, формировать ее понятия и выводы.

Математические модели, используемые для оптимизации управленческих решений, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария.

Макроэкономические модели описывают экономику как единое целое, связывая между собой укрупненные материальные и финансовые показатели (валовой национальный продукт).

Микроэкономические модели описывают либо взаимодействие различных структурных и функциональных составляющих экономики, либо поведение какой-либо отдельной составляющей в рыночной среде.

Теоретические модели позволяют изучать общие свойства экономики и ее характерные элементы дедукцией выводов из формальных предпосылок.

Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений. К числу прикладных относят эконометрические модели.

Равновесные модели занимают важное место в моделировании рыночной экономики и описывают состояние исследуемого объекта, когда результирующая разнообразных ситуаций, стремящихся вывести его из данного состояния, равна нулю.

В статистических моделях описывается состояние экономического объекта в конкретный момент или период времени; обычно фиксируются значения ряда величин, являющихся переменными, в динамике.

Динамические модели, включающие взаимосвязь переменных величин по времени, не сводятся к простому суммированию нескольких статистических моделей, а описывают различные силы и взаимодействия в экономике, которые определяют в ней ход реальных процессов.

Детерминированные модели предполагают жесткие функциональные связи между переменными величинами модели.

Стохастические модели допускают наличие воздействий на исследуемые показатели и для их описания используют инструментарий теории.

На уровне организации моделирование имеет определенные особенности. В частности, можно выделить рациональные модели – это выбор альтернатив с максимальной выгодой для организации; модели организационно-ограничейной рациональности, когда руководитель ограничен в принятии решений определенными возможностями организации: ресурсами, временем, возможностями исполнителей и т.п.; модели личностно-ограниченной рациональности, когда ограничениями при принятии решений становятся личные предубеждения или сомнения менеджера.

Когда мы говорим о создании бизнес процессов, многие имеют в виду построение блок-схем бизнес процессов. В связи с этим один из частых вопросов - какие инструменты лучше использовать? Ведь без хороших инструментов моделирование бизнес процессов становится непростой задачей.

Я подготовил для вас подборку и краткое описание инструментов по управлению и моделированию бизнес процессов.

Конечно, существует большое количество разных инструментов моделирования и управления процессами. Моей задачей было рассказать о тех, которые не требуют огромных проектов интеграции и могут быть использованы с минимальными затратами. Кстати, по этой причине я не стал рассматривать платформы ARIS, IBM и т.д.

Заголовок каждого раздела – это название инструмента и ссылка на страницу производителя. Можете сразу знакомиться с подробностями.

Инструменты управления бизнес процессами

BizAgi Suite

Если вы хотите получить не только модели и описания бизнес процессов, но и создать исполняемые приложения по ним, то это именно то, что нужно. BizAgi Suite состоит, по сути, из двух модулей - BizAgi Modeler, который используется для моделирования и описания бизнес процессов, и BizAgi Studio, который позволяет превратить модели в исполняемые приложения. Классно то, что это не требует навыков программирования, т.е. каждому по силам делать приложения.

ELMA BPM

Изюминка программы заключается в возможности интеграции с платформой 1С, что, безусловно, весьма привлекательно для российских компаний. Что это значит? Это значит, что все происходящее в 1С будет отражено в ELMA. И наоборот)

ELMA позволяет исполнять и отслеживать выполнение процессов в реальном времени. Для построения моделей используется нотация BPMN 2.0. Кстати, именно благодаря сотрудникам ELMA нотация была переведена на русский язык. За что им большое человеческое спасибо.

Очень мощно работает система документооборота в системе. Все документы имеют классификацию по типам, рассортированы по папкам, имеют правила создания и работы и т.д. Конечно, потребуется время, чтобы привести ваши документы в требуемый вид и соответствие системе, но оно того стоит. Если все сделано правильно, то вы запросто сможете отследить жизненный цикл любого документа.

Существуют дополнительные модули – Проекты, CRM и т.д. Но их не пробовал, поэтому ничего не могу сказать.

Интеграцией и обучением по работе с ELMA компания занимается самостоятельно. Судя по реализованным проектам, можно сказать, что они знают свое дело.

Функционал и особенности

  • Построение моделей бизнес процессов
  • Назначение ролей бизнес процессов сотрудникам
  • Выполнение и отслеживание процессов в реальном времени
  • Системная работа с документооборотом
  • Удобная “справка”
  • Отличная поддержка
  • Интеграция с 1С

Стоимость

  • 77 000 рублей за 10 лицензий ELMA Standart. Это минимальное количество. На мой взгляд, стоимость вполне адекватна функционалу.

Резюме

Вы твердо приняли решение заниматься управлением бизнес процессами, их автоматизацией и улучшением? Вы привязаны к 1С? Тогда ELMA – это то, что нужно.

Business Studio

Так же как и ELMA, это российская разработка. Наверное, самый раскрученный инструмент для управления бизнес процессами на отечественном рынке. Первая версия увидела свет в 2004 году. Впервые я столкнулся с этой программой в 2006. На тот момент это было самое лучшее решение.

В принципе, в программе все довольно стандартно - определяем цели компании, моделируем процессы, которые позволяют достигать целей, назначаем ответственных из дерева оргструктуры, отмечаем используемые в процессах ресурсы.

Очень примечательно, что для постановки целей используется концепция Системы сбалансированных показателей. Это одна из самых успешных методик перевода стратегии компании в осязаемый и понятный вид.

Построение бизнес процессов, как часто происходит, производится сверху вниз. Программа поддерживает несколько нотаций моделирования: IDEF, eEPC, BPMN и еще несколько других.

Присутствует возможность имитационного моделирования, проведения функционально-стоимостного анализа и автоматической генерации документов, например, должностных инструкций. Документы соответствуют требованиям законодательства, что существенно облегчает работу. Выполнение и мониторинг процессов происходит через интеграцию с другими системами, например, ELMA.

Функционал и особенности

  • Моделирование процессов в разных нотациях
  • Постановка целей компании по Системе сбалансированных показателей
  • Интеграция со сторонними системами.
  • Контроль выполнения процессов
  • База знаний

Стоимость

  • Ценообразование гибкое, так что для определения стоимости необходимо обратиться к консультантам компании. Т.к. я не сталкивался с покупкой данного ПО в последние пару лет, то порядок цифр мне неизвестен.

Резюме

Система мощная. Но сложная. Потребуются серьезные затраты, в первую очередь временные – для отладки и интеграции системы. Лучше всего, если у вас будет отдел или просто несколько бизнес-аналитиков, которые возьмут на себя эту работу. Работа с программой требует глубокого понимания методик и специфики программы.

Моделирование бизнес процессов

Visual Paradigm

Скажу откровенно, это лучшая программа для моделирования и описания бизнес процессов. Более удобного, функционального и гибкого инструмента для моделирования я не встречал.

Начнем с того, что VP поддерживает большое количество нотаций, блок-схем и моделей. Начиная от стандартных нотаций и заканчивая схемами баз данных, диаграмм взаимодействия и матриц.

Непосредственно моделирование выполнено очень удобно. В программе полностью отсутствуют недостатки, свойственные другим, например: наплывы элементов диаграммы друг на друга, пересечение стрелок, сбои при перетаскивании объектов, пулов и т.д. Интерфейс удобен, понятен и может настраиваться пользователем.

Все модели могут быть связаны друг с другом, так что провести моделирование всей системы бизнеса не проблема. Кроме того, возможно провести имитационное моделирование и проверку диаграмм.

VP позволяет детально управлять атрибутами элементов, что, в свою очередь, позволяет автоматически генерировать отличные описания. Т.к. программа изначально ориентирована на разработчиков информационных систем, каждому элементу можно задать условия поведения в системе, бизнес-правила и т.д. Кстати, шаблоны документов также настраиваются.

И наконец, программа позволяет выгружать полученные модели в виде программного кода. Причем в разных языках! Безусловно, данная функция имеет высокую ценность при разработке информационных систем и автоматизации бизнес процессов.

Функционал и особенности

  • Моделирование бизнес процессов в разных нотациях
  • Построение других моделей
  • Проверка моделей
  • Автоматическая генерация документов
  • Создание и назначение правил поведения моделей
  • Взаимосвязь моделей
  • Выгрузка моделей в виде программного кода
  • Версия для Mac OS X

Стоимость

  • По подписке – 35$ в месяц
  • Полная лицензия – 800$

Резюме

Лучшая программа для моделирования и описания бизнес процессов.

BizAgi Modeler

Это часть вышеупомянутого BizAgi Suite. Программа независима от полного комплекта и может быть поставлена отдельно.

Очень простой, лаконичный и удобный интерфейс.

Хороший рабочий инструмент для моделирования, который к тому же часто обновляется и совершенствуется. Модели, построенные в BizAgi Modeler, полностью совместимы с полной версией - Suite. Существуют определенные и свойственные только этой программе ограничения при моделировании, которых нет в нотации BPMN, но они в принципе обходятся.

Работать с моделями весьма удобно. Правда, иногда могут возникать досадные смещения элементов модели. Особенно при перетаскивании большого количества элементов. На мой взгляд, недостаточно проработана оптимизация расположения стрелок и элементов. Это приводит к тому, что иногда приходится немного повозиться для гармоничного расположения элементов.

Недостаточно проработана взаимосвязь диаграмм. Т.е. связать можно, но не напрямую. Атрибуты элементам можно назначать любые - вы сами определяете название и свойства атрибута.

Возможна проверка моделей и генерация описания по шаблону.

Несмотря на некоторые недостатки, данный инструмент заслуживает твердую пятерку и подойдет небольшим компаниям. Особенно в свете того, что инструмент полностью бесплатный.

Функционал и особенности

  • Нотация BPMN
  • Проверка моделей
  • Автоматическая генерация документов
  • Управление атрибутами элементов моделей
  • Возможность добавлять свои элементы в модели
  • Выгрузка модели в графическом виде
  • Удобный интерфейс
  • На русском языке
  • Возможна совместная работа над моделями

Стоимость

  • Полностью бесплатно

Резюме

Подойдет как начинающим, так и компаниям, уже занимающимся моделированием и описанием процессов. Прост в освоении. Очень рекомендую.

В апреле в Москве я провожу курс Управление бизнес процессами в организации, в котором рассматривается моделирование бизнес процессов в BizAgi Modeler. .

ARIS Express

Бесплатная и простая “рисовалка” процессов от монстра по имени ARIS. А точнее, Software AG.

В своем распоряжении имеет несколько вариантов моделей – в частности: модели бизнес процессов в нотации eEPC и BPMN, организационные модели, карты процессов и т.д. Примечательна наличием функции Smart Design, которая позволяет быстро забить необходимые данные в таблицу и программа самостоятельно создаст диаграмму. Для быстрых набросков весьма удобно.

К сожалению, Express это только графическое средство. Модели нельзя связать друг с другом, атрибуты не назначишь и тому подобное. Состав элементов диаграмм весьма ограничен, так что не получится создать модель в Express и экспортировать в ARIS BA. Кстати, ни в коем случае не используйте это ПО для работы с нотацией BPMN. Несмотря на то, что такие модели можно здесь создавать, их ограниченность задает кардинально неверное впечатление о функционале BPMN.

Однако мне известны весьма серьезные компании, которые используют этот инструмент. Причем некоторые утверждают, что он удобнее MS Visio. Это не так. Visio – мощный инструмент, который позволяет фактически создать свою среду для управления процессами. Но об этом как-нибудь в другой раз.

Функционал и особенности

  • Нотации eEPC и BPMN
  • Карта процессов
  • Организационная структура
  • Функция Smart Design
  • Выгрузка модели в графическом виде
  • Простой интерфейс

Стоимость

  • Полностью бесплатно

Резюме

Выбирайте ARIS Express, если все вышеперечисленные ограничения вас не волнуют. Ну и если вы предпочитаете нотацию eEPC.

В конце марта в Москве пройдет моделированию бизнес процессов на базе ARIS Express. Запись открыта.

Онлайн-сервисы для моделирования бизнес процессов

Gliffy

Отличный сервис с разнообразным функционалом. Позволяет создавать не только модели в нотации BPMN, но и рабочие потоки, проектировать пользовательский интерфейс, создавать диаграммы UML, организационные диаграммы, карты сайтов и т.д.

Что очень важно, сервис позволяет проводить коллективную работу над диаграммами, притом сохраняются все версии модели. Кроме того, вы можете вставить диаграмму в виде шорткода на ваш сайт. Кстати, моя карта статей сделана именно в этом сервисе.

При моделировании процессов возможно связывать диаграммы друг с другом посредством гиперссылок, ведь одна диаграмма – это, по сути, одна страница.

Все элементы нотации BPMN уже присутствуют в сервисе. Также возможно самостоятельно изменять внешний вид элементов и добавлять свои. В бесплатной версии экспортировать диаграммы можно только в виде графических файлов.

Функционал и особенности

  • Полная поддержка BPMN
  • Взаимосвязи моделей через гиперссылки
  • Удобное построение моделей
  • Гибкая настройка внешнего вида элементов

Стоимость

  • Бесплатно с небольшими ограничениями
  • 4.95$ в месяц для стандартной версии и 9.95$ для бизнес-версии

Резюме

Удобный и функциональный сервис для создания диаграмм бизнес процессов и не только.

BPsimulator

Ну ооочень интересный сервис, в котором упор сделан не на модели, а на симуляцию и оценку модели.

Работает это следующим образом: моделируете процесс -> задаете свойства потоков, стоимости, длительности и занятости сотрудников -> запускаете симуляцию -> смотрите показатели процесса по результатам симуляции.

Что это дает? На самом деле многое. Симуляция позволяет с легкостью обнаруживать узкие места процесса, рассчитать стоимость ресурсов в процессе, оценить загрузку ресурсов и т.д.

Симулятор несложный, точнее, имеет определенные ограничения, но пользу из него извлечь можно. А при умении и немалую.

Управление достаточно удобное. Стрелки имеют туннели (я всегда обращаю внимание на этот момент). Полученные отчеты и модели можно сохранить на компьютер, Google Drive или One Drive.

Функционал и особенности

  • Моделирование процесса
  • Оценка стоимости / длительности процесса
  • Симуляция
  • Удобное построение моделей
  • Отчеты
  • Сохранение моделей в Google Drive или One Drive

Стоимость

  • Бесплатно с рекламой
  • 300 руб/мес без рекламы и с небольшими плюшками

Резюме

Очень советую попробовать.

Draw io

Сервис позволяет строить огромное количество диаграмм и имеет большой набор элементов. В том числе наборы для построения BPMN и eEPC диаграмм.

Возможно связывать модели через гиперссылки. Кроме того, можно к элементам присоединять файлы из облачных хранилищ данных.

Работа с моделями относительно удобна. Можно всячески настраивать внешний вид элементов. Но и это неудобно, отсутствует туннелирование стрелок, а также отталкивание объектов. Т.е. один элемент может размещаться на другом. Что приводит к тому, что необходимо тратить время на ручную расстановку элементов диаграммы.

Сервис позволяет сохранять модели в Google Drive, Dropbox, One Drive или на компьютер. Возможен экспорт моделей в форматах графических файлов, PDF, HTML, XLS.

Функционал и особенности

  • Построение различных диаграмм
  • Сохранение моделей в Google Drive, Dropbox или One Drive
  • Отсутствует возможность коллективной работы

Стоимость

  • Бесплатно

Резюме

Простая и бесплатная рисовалка. Благодаря интеграции с облачными хранилищами может быть использована в рамках группы сотрудников.

У меня все.

Введение.

1. Основные принципы моделирования систем управления.

1.1. Принципы системного подхода в моделировании систем управления.

1.2. Подходы к исследованию систем управления.

1.3. Стадии разработки моделей.

2. Общая характеристика проблемы моделирования систем управления.

2.1. Цели моделирования систем управления.

3. Классификация видов моделирования систем.

Заключение.

Список литературы.



1.1. ВВЕДЕНИЕ


В данной курсовой работе по теме “Применение моделирования при исследовании систем управления” я попытаюсь раскрыть основные методы и принципы моделирования в разрезе исследования систем управления.

Моделирование (в широком смысле) является основным методом иссле­дований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в раз­личных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.

В настоящее время нельзя назвать область человеческой деятель­ности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управле­ния различными системами, где основными являются процессы принятия решений на основе получаемой информации. Остановим­ся на философских аспектах моделирования, а точнее общей теории моделирования.

Методологическая основа моделирования. Все то, на что направ­лена человеческая деятельность, называется объектом (лат. objection - предмет). Выработка методологии направлена на упо­рядочение получения и обработки информации об объектах, кото­рые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.

В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом коли­честве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специ­ально поставленного эксперимента. При формулировании и провер­ке правильности гипотез большое значение в качестве метода сужде­ния имеет аналогия.


Обобщенно моделирование можно определить как метод опос­редованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:

1) моделирование как познавательный процесс, содержащий пе­реработку информации, поступающей из внешней среды, о проис­ходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;

2) моделирование, заключающееся в построении некоторой си­стемы-модели (второй системы), связанной определенными соот­ношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую являет­ся средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосред­ственного изучения поступающей информации.




1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МОДЕЛИРОВАНИЯ СИСТЕМ


Моделирование начинается с формирования предмета исследований - сис­темы понятий, отражающей существенные для моделирования характеристи­ки объекта. Эта задача является достаточно сложной, что подтверждается различной интерпретацией в научно-технической литературе таких фундамен­тальных понятий, как система, модель, моделирование. Подобная неоднознач­ность не говорит об ошибочности одних и правильности других терминов, а отражает зависимость предмета исследований (моделирования) как от рас­сматриваемого объекта, так и от целей исследователя. Отличительной особен­ностью моделирования сложных систем является его многофункциональность и многообразие способов использования; оно становится неотъемлемой частью всего жизненного цикла системы. Объясняется это в первую очередь технологи­чностью моделей, реализованных на базе средств вычислительной техники: достаточно высокой скоростью получения результатов моделирования и их сравнительно невысокой себестоимостью.

1.1. Принципы системного подхода в моделировании систем.

В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Последний рассматри­вает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатыва­емых раздельно. В отличие от этого системный подход предполага­ет последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.

Объект моделирования. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством - стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы. Система S - целенаправленное множество! взаимосвязанных элементов любой природы. Внешняя среда Е- множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием. "

В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом S и внешней средой Е. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.

С развитием науки и техники сам объект непрерывно усложняет­ся, и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, вза­имосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.

Системный подход - это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но на­иболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды Е из объективно существующей реальности и описание системы исходя из общесистемных позиций.

При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет по­дойти к выбору критерия и оценить, какие элементы войдут в со­здаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.


1.2. Подходы к исследованию систем.

Важным для системного под­хода является определение структуры системы - совокупности связей между элементами системы, отражающих их взаимодейст­вие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к ис­следованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.

При структурном подходе выявляются состав выделенных эле­ментов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. После­дняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание струк­туры - это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо фор­мализуемое на базе теории графов.

Менее общим является функциональное описание, когда рас­сматриваются отдельные функции, т. е. алгоритмы поведения систе­мы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция от­ображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов S iV) и подсистем Si систе­мы, либо системы S в целом.

При наличии некоторого эталона сравнения можно ввести коли­чественные и качественные характеристики систем. Для количест­венной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные харак­теристики системы находятся, например, с помощью метода экс­пертных оценок.

Проявление функций системы во времени S(t), т. е. функци­онирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплу­атации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оце­ниваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

Следует отметить, что создаваемая модель М с точки зрения системного подхода также является системой, т. е. S"=S"(M), и мо­жет рассматриваться по отношению к внешней среде Е. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвя­зей как внутри самой модели М, так и взаимодействия ее с внешней средой Е в значительной степени определяется тем, на каком уровне находится наблюдатель.

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классичес­кий подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классичес­кого (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдель­ные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные сто­роны процесса моделирования. По отдельной совокупности исход­ных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некото­рая компонента К будущей модели. Совокупность компонент объ­единяется в модель М.

Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классичес­кий подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно неза­висимое рассмотрение отдельных сторон функционирования реаль­ного объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличитель­ные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возник­новение нового системного эффекта.

С усложнением объектов моделирования возникла необхо­димость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т. е. систе­мы более высокого ранга, и вынужден перейти на позиции но­вого системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся составной частью метасисте­мы.

Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, ког­да сказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхо­да повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды Е. Все это заставило ис­следователей изучать сложный объект не изолированно, а во вза­имодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.

Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорци-1 овальных их значимости, на всех этапах исследования системы 5" и построения модели М". Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного - формулировки цели функционирования. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, эле­менты Э и осуществляется наиболее сложный этап синтеза - вы-< бор В составляющих системы, для чего используются специальные критерии выбора КВ.

При моделировании необходимо обеспечить максимальную эффективность модели системы, которая определяется как некоторая разность между какими-то показателями результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.



1.3. Стадии разработки моделей.

На базе системного подхода может быть предложена и некоторая последовательность разработки мо­делей, когда выделяют две основные стадии проектирования: мак­ропроектирование и микропроектирование.

На стадии макропроектирования на основе данных о ре­альной системе S и внешней среде Е строится модель внешней среды, выявляются ресурсы и ограничения для построения моде­ли системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S. Постро­ив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позво­ляет реализовать возможности модели по воспроизведению отдель­ных сторон функционирования реальной системы S.

Стадия микропроектирования в значительной степени зави­сит от конкретного типа выбранной модели. В случае имитацион­ной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечении систе­мы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы S.

Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного под­хода: 1) пропорционально-последовательное продвижение по эта­пам и направлениям создания модели; 2) согласование информаци­онных, ресурсных, надежностных и других характеристик; 3) пра­вильное соотношение отдельных уровней иерархии в системе моде­лирования; 4) целостность отдельных обособленных стадий постро­ения модели.

Модель М должна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длитель­ное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели.

Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функци­онирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функциониро­вания реальной системы S.


2. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ


С развитием системных исследований, с расширением экспери­ментальных методов изучения реальных явлений все большее значе­ние приобретают абстрактные методы, появляются новые научные Дисциплины, автоматизируются элементы умственного труда. Важное значение при создании реальных систем S имеют математические методы анализа и синтеза, целый ряд открытий базируется на! чисто теоретических изысканиях. Однако было бы неправильно забывать о том, что основным критерием любой теории является практика, и даже сугубо математические, отвлеченные науки базируются в своей основе на фундаменте практических знаний.

Экспериментальные исследования систем. Одновременно с развитием теоретических методов анализа и синтеза совершенствуются и методы экспериментального изучения реальных объектов, появляются новые средства исследования. Однако эксперимент был и остается одним из основных и существенных инструментов познания. Подобие и моделирование позволяют по-новому описать реальный! процесс и упростить экспериментальное его изучение. Совершенствуется и само понятие моделирования. Если раньше моделирование! означало реальный физический эксперимент либо построение макета, имитирующего реальный процесс, то в настоящее время появились новые виды моделирования, в основе которых лежит постановка не только физических, но также и математических эксперимен­тов.

Познание реальной действительности является длительным и сложным процессом. Определение качества функционирования большой системы, выбор оптимальной структуры и алгоритмов! поведения, построение системы S в соответствии с поставленной! перед нею целью - основная проблема при проектировании современных систем, поэтому моделирование можно рассматривать как один из методов, используемых при проектировании и исследовании больших систем.

Моделирование базируется на некоторой аналогии реального и мысленного эксперимента. Аналогия - основа для объяснения изучаемого явления, однако критерием истины может служить только практика, только опыт. Хотя современные научные гипотезы могут создаться чисто теоретическим путем, но, по сути, базируются на широких практических знаниях. Для объяснения реальных; процессов выдвигаются гипотезы, для подтверждения которых ставится эксперимент либо проводятся такие теоретические рассуждения, которые логически подтверждают их правильность. В широком смысле под экспериментом можно понимать некоторую процедур организации и наблюдения каких-то явлений, которые осуществляв ют в условиях, близких к естественным, либо имитируют их. 3

Различают пассивный эксперимент, когда исследователь наблюдает протекающий процесс, и активный, когда наблюдатель вмешивается и организует протекание процесса. В последнее время распространен активный эксперимент, поскольку именно на его основе) удается выявить критические ситуации, получить наиболее интересные закономерности, обеспечить возможность повторения эксперимента в различных точках и т. д.

В основе любого вида моделирования лежит некоторая модель, имеющая соответствие, базирующееся на некотором общем качест­ве, которое характеризует реальный объект. Объективно реальный объект обладает некоторой формальной структурой, поэтому для любой модели характерно наличие некоторой структуры, соответ­ствующей формальной структуре реального объекта, либо изуча­емой стороне этого объекта.

В основе моделирования лежат информационные провесы, по­скольку само создание модели М базируется на информации о ре­альном объекте. В процессе реализации модели получается инфор­мация о данном объекте, одновременно в процессе эксперимента с моделью вводится управляющая информация, существенное ме­сто занимает обработка полученных результатов, т. е. информация лежит в основе всего процесса моделирования.

Характеристики моделей систем. В качестве объекта моделирова­ния выступают сложные организационно-технические системы, ко­торые можно отнести к классу больших систем. Более того, по своему содержанию и созданная модель М также становится систе­мой S(M) и тоже может быть отнесена к классу больших систем, для которых характерно следующее.

1. Цель функционирования, которая определяет степень целена­правленности поведения модели М. В этом случае модели могут быть разделены на одноцелевые, предназначенные для решения одной задачи, и многоцелевые, позволяющие разрешить или рас­смотреть ряд сторон функционирования реального объекта.

2. Сложность, которую, учитывая, что модель М является сово­купностью отдельных элементов и связей между ними, можно оценить по общему числу элементов в системе и связей между ними. По разнообразию элементов можно выделить ряд уровней иерар­хии, отдельные функциональные подсистемы в модели М, ряд входов и выходов и т. д., т. е. понятие сложности может быть идентифицировано по целому ряду признаков.

3. Целостность, указывающая на то, что создаваемая модель М является одной целостной системой S(M), включает в себя большое количество составных частей (элементов), находящихся в сложной взаимосвязи друг с другом.

4. Неопределенность, которая проявляется в системе: по состоянию системы, возможности достижения поставленной цели, методам. решения задач, достоверности исходной информации и т. д. Основной характеристикой неопределенности служит такая ме­ра информации, как энтропия, позволяющая в ряде случаев оценить количество управляющей информации, необходимой для достиже­ния заданного состояния системы. При моделировании основная цель - получение требуемого соответствия модели реальному объекту и в этом смысле количество управляющей информации в модели можно также оценить с помощью энтропии и найти то предельное минимальное количество, которое необходимо для получения требуемого результата с заданной достоверностью. Та­ким образом, понятие неопределенности, характеризующее боль­шую систему, применимо к модели М и является одним из ее основных признаков .

5. Поведенческая страта, которая позволяет оценить эффектив­ность достижения системой поставленной цели. В зависимости от наличия случайных воздействий можно различать детерминирован­ные и стохастические системы, по своему поведению - непрерыв­ные и дискретные и т. д. Поведенческая страта рассмотрения систе­мы ^позволяет применительно к модели М оценить эффективность построенной модели, а также точность и достоверность полученных при этом результатов. Очевидно, что поведение модели М не обя­зательно совпадает с поведением реального объекта, причем часто моделирование может быть реализовано на базе иного материаль­ного носителя.

6. Адаптивность, которая является свойством высокоорганизо­ванной системы. Благодаря адаптивности удается приспособиться к различным внешним возмущающим факторам в широком диапа­зоне изменения воздействий внешней среды. Применительно в мо­дели существенна возможность ее адаптации в широком спектре возмущающих воздействий, а также изучение поведения модели в изменяющихся условиях, близких к реальным. Надо отметить, что существенным может оказаться вопрос устойчивости модели к раз­личным возмущающим воздействиям. Поскольку модель М - сложная система, весьма важны вопросы, связанные с ее сущест­вованием, т. е. вопросы живучести, надежности и т. д..

7. Организационная структура системы моделирования, кото­рая во многом зависит от сложности модели и степени совершенст­ва средств моделирования. Одним из последних достижений в об­ласти моделирования можно считать возможность использования имитационных моделей для проведения машинных экспериментов. Необходимы оптимальная организационная структура комплекса технических средств, информационного, математического и про­граммного обеспечении системы моделирования S"(M), оптималь­ная организация процесса моделирования, поскольку следует об­ращать особое внимание на время моделирования и точность полу­чаемых результатов.

8. Управляемость модели, вытекающая из необходимости обес­печивать управление со стороны экспериментаторов для получения возможности рассмотрения протекания процесса в различных усло­виях, имитирующих реальные. В этом смысле наличие многих управляемых параметров и переменных модели в реализованной системе моделирования дает возможность поставить широкий экс­перимент и получить обширный спектр результатов.

9. Возможность развития модели, которая исходя из современ­ного уровня науки и техники позволяет создавать мощные системы моделирования S(M) исследования многих сторон функциони­рования реального объекта. Однако нельзя при создании системы моделирования ограничиваться только задачами сегодняшнего дня. Необходимо предусматривать возможность развития системы мо­делирования как по горизонтали в смысле расширения спектра изучаемых функций, так и по вертикали в смысле расширения числа подсистем, т. е. созданная система моделирования должна позво­лять применять новые современные методы и средства. Естествен­но, что интеллектуальная система моделирования может функци­онировать только совместно с коллективом людей, поэтому к ней предъявляют эргономические требования.

2.1. Цели моделирования систем управления.

Одним из наиболее важных аспек­тов построения систем моделирования является проблема цели. Любую модель строят в зависимости от цели, которую ставит перед ней исследователь, поэтому одна из основных проблем при моделировании - это проблема целевого назначения. Подобие процесса, протекающего в модели М, реальному процессу является не целью, а условием правильного функционирования модели, и по­этому в качестве цели должна быть поставлена задача изучения какой-либо стороны функционирования объекта.

Для упрощения модели М цели делят на подцели и создают более эффективные виды моделей в зависимости от полученных подцелей моделирования. Можно указать целый ряд примеров це­лей моделирования в области сложных систем. Например, для предприятием весьма существенно изучение процессов оператив­ного управления производством, оперативно-календарного плани­рования, перспективного планирования и здесь также могут быть успешно использованы методы моделирования.

Если цель моделирования ясна, то возникает следующая пробле­ма, а именно проблема построения модели М. Построение модели оказывается возможным, если имеется информация или выдвинуты гипотезы относительно структуры, алгоритмов и параметров ис­следуемого объекта. На основании их изучения осуществляется идентификация объекта. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.

Если модель М построена, то следующей проблемой можно считать проблему работы с ней, т. е. реализацию модели, основные задачи которой - минимизация времени получения конечных peзультатов и обеспечение их достоверности.

Для правильно построенной модели М характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы S, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства. В этом смысле модель выступает как некоторый “заместитель” оригинала, обеспечивающий фиксацию и изучение лишь некоторых свойств реального объекта.

В одних случаях наиболее сложной оказывается идентификация в других - проблема построения формальной структуры объекта. Возможны трудности и при реализации модели, особенно в случай имитационного моделирования больших систем. При этом следует подчеркнуть роль исследователя в процессе моделирования. Постановка задачи, построение содержательной модели реального объекта во многом представляют собой творческий процесс и базируются на эвристике. И в этом смысле нет формальных путей выбора оптимального вида модели. Часто отсутствуют формальные методы, позволяющие достаточно точно описать реальный процесс. Поэтому выбор той или иной аналогии, выбор того или иного математического аппарата моделирования полностью основывается на имеющемся опыте исследователя и ошибка исследовав теля может привести к ошибочным результатам моделирований.

Средства вычислительной техники, которые в настоящее время широко используются либо для вычислений при аналитическом моделировании, либо для реализации имитационной модели системы, могут лишь помочь с точки зрения эффективности реализации сложной модели, но не позволяют подтвердить правильность тон или иной модели. Только на основе обработанных данных, опыта исследователя можно с достоверностью оценить адекватность модели по отношению к реальному процессу.

Если в ходе моделирования существенное место занимает реаль­ный физический эксперимент, то здесь весьма важна и надежность используемых инструментальных средств, поскольку сбои и отказы программно-технических средств могут приводить к искаженным значениям выходных данных, отображающих протекание процесса. И в этом смысле при проведении физических экспериментов необ­ходимы специальная аппаратура, специально разработанное мате­матическое и информационное обеспечение, которые позволяют реализовать диагностику средств моделирования, чтобы отсеять те ошибки в выходной информации, которые вызваны неисправностя­ми функционирующей аппаратуры. В ходе машинного эксперимен­та могут иметь место и ошибочные действия человека-оператора. В этих условиях серьезные задачи стоят в области эргономического обеспечения процесса моделирования.


3. КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ СИСТЕМ.


В основе моделирования лежит теория подобия, которая утвер­ждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделирова­нии абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функ­ционирования объекта.

Классификационные признаки. В качестве одного из первых при­знаков классификации видов моделирования можно выбрать сте­пень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерми­нированные и стохастические, статические и динамические, диск­ретные, непрерывные и дискретно-непрерывные. Детерминирован­ное моделирование отображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероят­ностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характе­ристики, т. е. набор однородных реализаций. Статическое моде­лирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделировании используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы J можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в вид наглядного, символического и математического.

Аналоговое моделирование основывается на применении анало­гий различных уровней. Наивысшим уровнем является полная ана­логия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уров­ней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшество­вать проведению других видов моделирования. В основе постро­ения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдель­ных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять от­дельные цепочки из слов и предложений. Используя операции объ­единения, пересечения и дополнения теории множеств, можно в от­дельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные раз­личия. Тезаурус - словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единствен­ное понятие, хотя в обычном словаре одному слову могут соответ­ствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью опреде­ленной системы знаков или символов.

Математическое моделирование. Для исследования характерис­тик процесса функционирования любой системы S математичес­кими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая мо­дель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристи­ки рассматриваемого реального объекта. Вид математической мо­дели зависит как от природы реального объекта, так и задач ис­следования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая,

Рис 1. Классификация видов моделирования систем.

описывает реальный объект лишь с некоторой степенью приближе­ния к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинирован­ное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде неко­торых функциональных соотношений (алгебраических, интегродиф-ференциальных, конечно-разностных и т. п.) или логических усло­вий. Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качест­венным, когда, не имея решения в явном виде, можно найти неко­торые свойства решения (например, оценить устойчивость реше­ния).

В отдельных случаях исследования системы могут удовлетво­рить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие каче­ственные методы широко используются, например, в теории авто­матического управления для оценки эффективности различных ва­риантов систем управления.


Заключение.


В заключении данной курсовой работы хочу сделать несколько выводов из вышеизложенного материала о моделировании в исследовании систем управления. Итак определим гносеологическую природу моделирования.

Определяя гносеологическую роль теории моделирования, т.е. ее значение в процессе познания, необходимо прежде всего отвлечь­ся от имеющегося в науке и технике многообразия моделей и выде­лить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключается в наличии неко­торой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительного самостоятельного квазиобъекта, позволяющего получить при ис­следовании некоторые знания о самом объекте.

В современной России управление и ее исследование идет по пути усложнения. Применяя методы моделирования такие, как аналогия, можно добиться впечатляющих результатов в хозяйственной деятельности предприятия. Аналогией называют суждение о каком-либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существен­ности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями.

В заключении вышесказанному можно подвести итог, что моделирование это основной путь в системе исследования систем управления и имеет чрезвычайную важность для менеджера любого уровня.

Список литературы.

1. Игнатьева А. В., Максимцов М. М. ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ, Москва, 2000

2. Патерсон Дж. Теория сетей Петри и моделирование систем. - М.: Мир, 1984.

3. Приикер А. Введение в имитационное моделирование и язык СЛАМП. - М.: Мир, 1987.

4.Советов Б. Я.. Яковлев С. А. Моделирование систем. - М.: Высшая школа, 1985.

5. Советов Б. Я., Яковлев С. А. Моделирование систем (2-е изд.). - М.: Высшая школа, 1998.

6.Советов Б. Я.. Яковлев С. А. Моделирование систем: Курсовое проек­тирование. - М.: Высшая школа, 1988.

7. Короткое Э.М. Исследование систем управления. - М.: “ДеКА”, 2000.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Жизненный цикл информационной системы подразделяется на четыре стадии:

Уточнение;

Конструирование;

Передача в эксплуатацию.

Границы каждой стадии определены некоторыми моментами времени, в которые необходимо принимать определенные критические решения и, следовательно, достигать определенных ключевых целей.

Начальная стадия: моделирование, управление требованиями

На начальной стадии устанавливается область применения системы и определяются граничные условия. Для этого необходимо идентифицировать все внешние объекты, с которыми должна взаимодействовать разрабатываемая система, и определить характер этого взаимодействия на высоком уровне. На начальной стадии идентифицируются все функциональные возможности системы и производится описание наиболее существенных из них.

Деловое применение включает:

Критерии успеха разработки;

Оценку риска;

Оценку ресурсов, необходимых для выполнения разработки;

Календарный план с указанием сроков завершения основных этапов.

В рамках данной стадии проводится исследование и анализ деятельности автоматизируемого объекта; значение имеют, разумеется, только те процессы, которые соответствуют целям и задачам этого объекта. В результате получается модель объекта, которую обычно описывают в терминах бизнес-процессов и бизнес-функций. Параллельно с этим выявляются недостатки существующих информационных систем (вспоминаем принцип преемственности) и формулируются потребности в совершенствовании системы управления объектом и/или автоматизации его отдельных функций. Требования должны быть экономически обоснованными. Результатом выполнения описанных этапов стадии является оформление технико-экономического обоснования (ТЭО) и технического задания (ТЗ) на разработку ИС. Обычно ТЭО оформляется как часть ТЗ. Кроме того, в ТЗ обязательно отражаются требования к ИС и ограничения на ресурсы проектирования (в первую очередь, сроки исполнения). Требования к ИС определяются как множество функций, реализуемых системой, а также описание предоставляемой ей информации.

2. Стадия уточнения: анализ и проектирование.

На стадии уточнения проводится анализ прикладной области, разрабатывается архитектурная основа информационной системы.

При принятии любых решений, касающихся архитектуры системы, необходимо принимать во внимание разрабатываемую систему в целом. Это означает, что необходимо описать большинство функциональных возможностей системы и учесть взаимосвязи между отдельными ее составляющими.

В конце стадии уточнения проводится анализ архитектурных решений и способов устранения главных факторов риска в проекте.

В соответствии с полученными требованиями проектировщики разрабатывают функциональную архитектуру ИС, которая отражает структуру выполняемых ей функций, и системную архитектуру ИС, которая представляет собой состав обеспечивающих подсистем. Построение системной архитектуры проводится на базе описания функциональной архитектуры ИС и фактически заключается в составлении технологии обработки информации с участием всех обеспечивающих подсистем ИС (в первую очередь, информационного, технического, и программного обеспечения). Результатом выполнения стадии проектирования обычно являются:

1) концептуальная, логическая и физическая модели данных ИС;

2) спецификации модулей ИС;

3) спецификация пользовательских интерфейсов ИС;

4) множество выбранных проектных решений, определяющих архитектуру ИС – в том числе выбранная платформа ПО, количество звеньев в архитектуре (однозвенная, двухзвенная [клиент-сервер или файл-сервер], трехзвенная) и др. Итоговый документ, завершающий стадию проектирования, – технический проект (ТП).

3. Стадия конструирования: кодирование и тестирование

На стадии конструирования разрабатывается законченное изделие, готовое к передаче пользователю.

По окончании этой стадии определяется работоспособность разработанного программного обеспечения.

На этой стадии производится комплексная отладка ИС, проверка на соответствие модулей системы их спецификациям (наличие всех необходимых функций, отсутствие лишних функций), проверка надежности работы (восстанавливаемость после сбоев программного и аппаратного обеспечения, наработка на отказ и т.п.), обучение персонала. Сложные информационные системы обычно требуют опытного внедрения: например, сначала ИС устанавливается в одном отделе организации, затем постепенно к автоматизации подключаются остальные подразделения. Стадия внедрения завершается подписанием акта приемо-сдаточных испытаний – который устанавливает соответствие реализованной ИС требованиям заказчика.

4. Стадия передачи в эксплуатацию: установка и сопровождение.

На стадии передачи в эксплуатацию разработанное программное обеспечение передается пользователям. При эксплуатации разработанной системы в реальных условиях часто возникают различного рода проблемы, которые требуют дополнительных работ по внесению корректив в разработанный продукт. Это, как правило, связано с обнаружением ошибок и недоработок.

В конце стадии передачи в эксплуатацию необходимо определить, достигнуты цели разработки или нет.

На этой стадии обеспечивается процесс штатной эксплуатации ИС, который помимо всего прочего включает в себя сбор рекламаций (претензий) и статистики о функционировании ИС, исправление ошибок и недоработок, оформление требований к модернизации ИС.

Аннотация: Дается понятие модели, классификация моделей, описывается этапы математического моделирования процессов управления. Рассматривается модель управления обучением.

Основные понятия теории моделирования

Модель в общем смысле (обобщенная модель) есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта-оригинала произвольной природы, существенные для задачи, решаемой субъектом. Для теории принятия решений наиболее полезны модели , которые выражаются словами или формулами, алгоритмами и иными математическими средствами.

Пример словесной модели . Обсудим необходимость учета эффекта лояльности при управлении организацией в современных условиях. Под лояльностью понимается честное, добросовестное отношение к чему-либо или к кому-либо. Базу менеджмента, основанного на лояльности, заложил в 1908 году профессор Гарварда Джошуа Ройс. Он является автором книги "Философия лояльности", где впервые научно определено понятие "лояльность".

В рамках предлагаемой словесной модели бизнес-лояльность рассматривается с точки зрения трех самостоятельных базисных аспектов: лояльность потребителей, лояльность сотрудников и лояльность инвесторов. Каждый раз за словом "лояльность" понимается что-то свое:

  • приверженность (с точки зрения покупателей),
  • добросовестность (с точки зрения сотрудников),
  • взаимное доверие, уважение и поддержка (с точки зрения инвесторов).

Но несмотря на ярко выраженные компоненты, эта система должна рассматриваться только как единое целое, поскольку невозможно создать лояльных покупателей, не обращая внимания на лояльность сотрудников, или воспитать лояльность сотрудников без должного внимания к лояльности инвесторов. Ни одна из частей не может существовать отдельно от двух других, но все три вместе позволяют организации достигать невиданных высот в развитии.

Необходимо четко понимать, что менеджмент , основанный на лояльности, прежде всего обращен на людей. В первую очередь здесь рассматриваются именно люди и их роль в бизнесе. Это скорее модель мотивации и поведения, чем маркетингового, финансового или производственного развития. Лишь во вторую очередь менеджмент , основанный на лояльности, обобщает людей в более абстрактные категории и управляет техническими процессами.

Как показывает практика, люди всегда оказываются более готовыми работать на организацию, которая имеет цель служения, чем на организацию, которая существует только ради того, чтобы "делать деньги". Поэтому люди охотно работают в церкви или в общественных организациях.

Менеджеры, желающие успешно использовать модель управления, основанную на эффекте лояльности, не должны рассматривать прибыль как первоочередную цель, но как необходимый элемент благосостояния и выживания трех составляющих каждой бизнес-системы : покупателей, сотрудников и инвесторов. Еще в начале ХХ в. Генри Форд говорил, что "организация не может работать без прибыли, ... иначе она умрет. Но и создавать организацию только ради прибыли... значит привести ее к верной гибели, так как у нее не будет стимула к существованию".

Основа рассматриваемой модели лояльности- не прибыль , а привлечение дополнительного количества покупателей, процесс, который осознанно или неосознанно лежит в основе большинства преуспевающих организаций. Создание целевого количества покупателей пронизывает все сферы бизнеса компании. Силы, управляющие взаимосвязями между покупателями, сотрудниками и инвесторами, называют силами лояльности. Критерий успешности - возвращаются ли покупатели, чтобы купить больше, или они идут куда-то еще, т.е. проявляют ли они лояльность.

Как причина лояльность инициирует несколько экономических эффектов, которые влияют на всю бизнес систему примерно следующим образом:

  1. Прибыли и рыночная доля растут, когда наиболее перспективные покупатели охватывают весь спектр деятельности компании, создавая о ней хорошее общественное мнение и повторно приходя за покупками. За счет большого и качественного предложения компания может себе позволить быть более привередливой при выборе новых покупателей и концентрироваться на более прибыльных и потенциально лояльных проектах их привлечения, дальше стимулируя свой долгосрочный рост.
  2. Долгосрочный рост позволяет фирме привлекать и сохранять лучших сотрудников. Постоянное поддержание целевого количества покупателей увеличивает лояльность сотрудников, давая им чувство гордости и удовлетворения своей работой. Далее, в процессе взаимодействия постоянные сотрудники узнают больше о своих постоянных покупателях, в частности, как лучше их обслуживать, чтобы объем покупок рос. Этот увеличивающийся объем продаж подстегивает и лояльность покупателей, и лояльность сотрудников.
  3. Лояльные сотрудники в долгосрочном периоде учатся снижать издержки и повышать качество работы (эффект научения). Организация может использовать эту дополнительную продуктивность для расширения системы вознаграждения, для покупки лучшего оборудования и обучения. Все это, в свою очередь, подстегнет продуктивность сотрудников, рост вознаграждений и, следовательно, лояльность.
  4. Такая спираль продуктивности дает такое преимущество в издержках, которое очень сложно скопировать для чисто конкурентных организаций. Долгосрочные преимущества в издержках, соединенные с устойчивым ростом количества лояльных покупателей, приносят прибыль, очень привлекательную для инвесторов. Это, в свою очередь, расширяет возможности компании по привлечению и сохранению "правильных" инвесторов.
  5. Лояльные инвесторы ведут себя как партнеры. Они стабилизируют систему, снижают издержки по поиску капитала и дают гарантии, что полученные отвлеченные денежные потоки будут вложены обратно в бизнес как инвестиции. Это укрепляет организацию и увеличивает ее производственный потенциал.

Обсудим еще раз основные идеи модели лояльности. Всем известно, что покупатели - активы любой организации, и для достижения успеха ей необходимо управлять ими также эффективно, как и другими активами. Но для этого нужно быть в состоянии сегментировать покупателей, предсказывать их поведение, а также жизненный цикл их денежных потоков.

В основе большинства провалов лежит общепринятый бизнес-язык организации - бухгалтерский учет , который в настоящий момент ограничивает возможности формирования лояльности. Бухгалтеры не в состоянии провести черту между выручкой, полученной от вновь пришедших покупателей, и выручкой, полученной от постоянных, лояльных покупателей. Это происходит потому, что они не знают, а точнее, их не заботит тот факт, что обслуживание нового покупателя оказывается более дорогим, нежели обслуживание постоянного покупателя. Хуже того, в большинстве организаций бухгалтеры считают вложения в привлечение покупателей краткосрочными. И это вместо того, чтобы относить их на специальный счет покупателя и амортизировать в течение всего времени отношений с ним.

Итак, как же сформировать портфель лояльных покупателей? Существует два варианта действий. Первый - увеличение списка покупателей. Организация постоянно добавляет новых покупателей к началу списка, но ее старые покупатели также постоянно вымываются снизу из этого списка. Получается эффект дырявой корзины. Чем больше в ней дыра, тем тяжелее ее наполнить и сохранять наполненной. Второй - заключен в эффекте прибыли от каждого покупателя. В большинстве организаций прибыль , которую приносит каждый покупатель , растет, пока он остается ее клиентом. Другими словами, для организации невыгодно терять постоянных покупателей, даже заменяя их новыми. Получается ситуация, когда "за одного битого двух небитых дают".

При подборе покупателей необходимо помнить, что существует три основных типа лояльных покупателей. Это помогает определить, сможет ли организация сделать покупателя лояльным:

  1. Некоторые покупатели изначально предсказуемы и лояльны, вне зависимости от того, как организация с ними работает. Они просто лояльны по природе своей. Они предпочитают более стабильные и длительные отношения.
  2. Некоторые покупатели более прибыльны, чем другие. Они тратят деньги в большем количестве, чем другие, оплачивают покупки безотлагательно и требуют меньше внимания обслуживающего персонала.
  3. Некоторые покупатели находят продукты или услуги организации (в силу их особенностей) более привлекательными, чем у конкурентов. Нет такой организации, товары которой нравились бы всем без исключения. Сильные стороны ее товаров или услуг будут просто лучше подходить для определенных покупателей, более полно удовлетворяя их желаниям и возможностям.

Без сомнения, каждая организация уникальна, но все же в той или иной мере показатели ее прибылей будут укладываться в общую модель экономических эффектов, получаемых от постоянства или лояльности покупателей. Среди них стоит особо отметить следующие:

  • издержки привлечения (реклама, направленная новым покупателям, комиссионные по продажам новым покупателям, накладные расходы продаж и т.д.),
  • базовая прибыль (цена, которую платят вновь появившиеся покупатели, превышает затраты организации на создание товара),
  • рост выручки (как правило, если покупатель доволен параметрами товара, он склонен увеличивать объемы покупок с течением времени),
  • издержки сбережений (близкое знакомство с товарами организации уменьшает зависимость покупателей от ее сотрудников в вопросах информации и советов),
  • отзывы (удовлетворенные уровнем обслуживания покупатели рекомендуют организацию своим друзьям и знакомым),
  • дополнительная цена (постоянные покупатели, сотрудничающие с организацией достаточно долго, чтобы изучить все ее товары и услуги, получают несоизмеримо больше от продолжения отношений и не нуждаются в дополнительных скидках или рекламных акциях).

Чтобы оценить истинный долгосрочный потенциал лояльности покупателя или группы покупателей, необходимо знать их предрасположенность к проявлению постоянства. Так некоторые покупатели перебегут к конкуренту и за 2% скидку, а другие останутся и при 20% разнице в цене. То количество усилий, которое требуется для переманивания различных типов покупателей, называется коэффициентом лояльности. В некоторых организациях для оценки коэффициентов лояльности используется история развития или поведение покупателей на отдельных сегментах. В других, особенно в тех, чье будущее слабо связано с прошлым, пытаются методами анализа данных нащупать, на сколько велика должна быть скидка, чтобы покупатели перешли к их организации. Но, несмотря на все трудности в измерении, использование коэффициента лояльности позволяет организациям идентифицировать сохранение покупателей и внедрять оправданную практику, проверенную на одном департаменте, во всю организацию.

Развитие систем измерения, анализа и управления денежными потоками, полученными от лояльности, может привести организацию к инвестициям, которые в дальнейшем обеспечат рост количества покупателей и организации в целом.

Итак, модель лояльности подробно обоснована на словесном уровне. В этом обосновании упоминалось математическое и компьютерное обеспечение. Однако для принятия первоначальных решений их использование не требуется.

Математические модели при принятии решений . При более тщательном анализе ситуации словесных моделей, как правило, не достаточно. Необходимо применение достаточно сложных математических моделей. Так, при принятии решений в менеджменте производственных систем используются:

  • модели технологических процессов (прежде всего модели контроля и управления);
  • модели обеспечения качества продукции (в частности, модели оценки и контроля надежности);
  • модели массового обслуживания;
  • модели управления запасами (модели логистики);
  • имитационные и эконометрические модели деятельности предприятия в целом, и др.

В процессе подготовки и принятия решений часто используют имитационные модели и системы. Имитационная модель позволяет отвечать на вопрос: "Что будет, если…" Имитационная система - это совокупность моделей, имитирующих протекание изучаемого процесса, объединенная со специальной системой вспомогательных программ и информационной базой, позволяющих достаточно просто и оперативно реализовать вариантные расчеты.

Основные термины математического моделирования . Прежде чем начать рассматривать конкретные математические модели процессов управления, необходимо вспомнить определения основных терминов, такие, как:

  • компоненты системы - части системы, которые могут быть вычленены из нее и рассмотрены отдельно;
  • независимые переменные - они могут изменяться, но это внешние величины, не зависящие от проходящих в системе процессов;
  • зависимые переменные - значения этих переменных есть результат (функция) воздействия на систему независимых внешних переменных;
  • управляемые (управляющие) переменные - те, значения которых могут изменяться исследователем;
  • эндогенные переменные - их значения определяются в ходе деятельности компонент системы (т.е. "внутри" системы);
  • экзогенные переменные - определяются либо исследователем, либо извне, т.е. в любом случае действуют на систему извне.

При построении любой модели процесса управления желательно придерживаться следующего плана действий:

  1. Сформулировать цели изучения системы;
  2. Выбрать те факторы, компоненты и переменные, которые являются наиболее существенными для данной задачи;
  3. Учесть тем или иным способом посторонние, не включенные в модель факторы;
  4. Осуществить оценку результатов, проверку модели , оценку полноты модели.

Модели можно делить на следующие виды:

  1. Функциональные модели - выражают прямые зависимости между эндогенными и экзогенными переменными .
  2. Модели, выраженные с помощью систем уравнений относительно эндогенных величин. Выражают балансовые соотношения между различными экономическими показателями (например, модель межотраслевого баланса).
  3. Модели оптимизационного типа. Основная часть модели - система уравнений относительно эндогенных переменных . Но цель - найти оптимальное решение для некоторого экономического показателя (например, найти такие величины ставок налогов, чтобы обеспечить максимальный приток средств в бюджет за заданный промежуток времени).
  4. Имитационные модели - весьма точное отображение экономического явления. Математические уравнения при этом могут содержать сложные, нелинейные, стохастические зависимости.

С другой стороны, модели можно делить на управляемые и прогнозные. Управляемые модели отвечают на вопрос: "Что будет, если...? "; "Как достичь желаемого? ", и содержат три группы переменных: 1) переменные, характеризующие текущее состояние объекта; 2) управляющие воздействия - переменные, влияющие на изменение этого состояния и поддающиеся целенаправленному выбору; 3) исходные данные и внешние воздействия, т.е. параметры, задаваемые извне, и начальные параметры.

В прогнозных моделях управление не выделено явно. Они отвечают на вопросы: "Что будет, если все останется по -старому? "

Далее, модели можно делить по способу измерения времени на непрерывные и дискретные. В любом случае, если в модели присутствует время, то модель называется динамической. Чаще всего в моделях используется дискретное время, т.к. информация поступает дискретно: отчеты, балансы и иные документы составляются периодически. Но с формальной точки зрения непрерывная модель может оказаться более простой для изучения. Отметим, что в физической науке продолжается дискуссия о том, является ли реальное физическое время непрерывным или дискретным.

Обычно в достаточно крупные социально-экономические модели входят материальный, финансовый и социальный разделы . Материальный раздел - балансы продуктов, производственных мощностей, трудовых, природных ресурсов. Это раздел, описывающий основополагающие процессы, это уровень, обычно слабо подвластный управлению, особенно быстрому, поскольку весьма инерционен.

Финансовый раздел содержит балансы денежных потоков, правила формирования и использования фондов, правила ценообразования и.т.п. На этом уровне можно выделить много управляемых переменных. Они могут быть регуляторами. Социальный раздел содержит сведения о поведении людей. Этот раздел вносит в модели принятия решений много неопределенностей, поскольку трудно точно правильно учесть такие факторы как трудоотдача, структура потребления, мотивация и.т.п.

При построении моделей, использующих дискретное время, часто применяют методы эконометрики. Среди них популярны регрессионные уравнения и их системы. Различные системы регрессионных уравнений, построенные для решения практически важных задач, рассмотрены в. Часто используют лаги ( анализ экономического явления с помощью вариантных расчетов) - это математическая модель . Имитационная система - это совокупность моделей, имитирующих протекание изучаемого процесса, объединенная со специальной системой вспомогательных программ и информационной базой, позволяющих достаточно просто и оперативно реализовать вариантные расчеты. Таким образом, под имитацией понимается численный метод проведения машинных экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительных периодов времени, при этом имитационный эксперимент состоит из следующих шести этапов:

  1. формулировка задачи,
  2. построение математической модели,
  3. составление программы для ЭВМ,
  4. оценка пригодности модели,
  5. планирование эксперимента,
  6. обработка результатов эксперимента.

Имитационное моделирование (simulation modelling ) широко применяется в различных областях, в том числе в экономике.

Экономико-математические методы управления можно разделить на несколько групп:

  • - методы оптимизации,
  • методы, учитывающие неопределенность, прежде всего вероятностно-статистические,
  • методы построения и анализа имитационных моделей,
  • методы анализа конфликтных ситуаций (теории игр).

Во всех этих группах можно выделить статическую и динамическую постановки. При наличии фактора времени используют дифференциальные уравнения и разностные методы.

Теория игр (более подходящее название - теория конфликта, или теория конфликтных ситуаций) зародилась как теория рационального поведения двух игроков с противоположными интересами. Она наиболее проста, когда каждый из них стремится минимизировать свой средний проигрыш, т.е. максимизировать свой средний выигрыш. Отсюда ясно, что теория игр склонна излишне упрощать реальное поведение в ситуации конфликта. Участники конфликта могут оценивать свой риск по иным критериям. В случае нескольких игроков возможны коалиции. Большое значение имеет устойчивость точек равновесия и коалиций.

В экономике еще 150 лет назад теория дуополии (конкуренции двух фирм) О.Курно была развита на основе соображений, которые мы сейчас относим к теории игр. Новый толчок дан классической монографией Дж. фон Неймана и О.Моргенштейна, вышедшей вскоре после второй мировой войны. В учебниках по экономике обычно разбирается "дилемма заключенного" и точка равновесия по Нэшу (ему присуждена Нобелевская премия по экономике за 1994 г.).