Главная · Русский язык · Вектор a имеет. Правила, по которым происходит сложение векторов. Базис системы векторов

Вектор a имеет. Правила, по которым происходит сложение векторов. Базис системы векторов

Дата создания: 2009-04-11 15:25:51
Последний раз редактировалось: 2012-02-08 09:19:45

Долго я не хотел писать данную статью - думал как подавать материал. Ещё и картинки нужно рисовать. Но, видать сегодня удачно сложились звёзды и статье про векторы быть. Хотя, это всего лишь черновой вариант. В будущем данную статью разобью на несколько отдельных - материала достаточно. Также, постепенно статья будет улучшаться: буду вносить в неё изменения - т.к. за один присест не получится раскрыть все аспекты.

Векторы были введены в математику в девятнадцатом века, для описания величин, которые трудно было описывать с помощью скалярных значений.

Векторы интенсивно применяются при разработке компьютерных игр. Применяются они не только традиционно - для описания таких величин как сила или скорость, но и в областях, которые казалось бы никак не связаны с векторами: хранение цвета, создание теней.

Скаляры и векторы

Для начала напомню, что такое скаляр, и чем он отличается от вектора.

Скалярные значения хранят какую-то величину: масса, объём. То есть это сущность, которая характеризуется только одним числом (например, количество чего-либо).

Вектор в отличии от скаляра описывается с помощью двух значений: величина и направление.

Важное отличие векторов от координат: векторы не привязаны к конкретному местоположению! Ещё раз повторюсь, главное в векторе - длина и направление.

Вектор обозначается жирной буквой латинского алфавита. Например: a , b , v .

На первом рисунке можно увидеть как вектор обозначают на плоскости.

Векторы в пространстве

В пространстве векторы можно выражать с помощью координат. Но прежде нужно ввести одно понятие:

Радиус-вектор точки

Возьмём в пространстве какую-нибудь точку M(2,1). Радиус-вектор точки - это вектор начинающийся в начале координат и заканчивающийся в точке.

У нас здесь ни что иное как вектор OM . Координаты начала вектора (0,0), координаты конца (2,1). Обозначима этот вектор как a .

В данном случае вектор можно записать следующим образом a = <2, 1>. Это координатная форма вектора a .

Координаты вектора называются его компонентами относительно осей. Напрмер, 2 - компонета вектора a относительно оси x.

Давайте ещё раз остановимся на том, что такое координаты точки. Координата точки (например x) - это проекция точки на ось, т.е. основание перпендикуляра, опущенного из точки на ось. В нашем примере 2.

Но вернёмся к первому рисунку. У нас здесь две точки A и B. Пусть координатами точек будут (1,1) и (3,3). Вектор v в данном случае можно обозначить так v = <3-1, 3-1>. Вектор лежащий в двух точках трёхмерного пространстве будет выглядеть так:

v =

Думаю никаких сложностей тут нет.

Умножение вектора на скаляр

Вектор можно умножать на скалярные значения:

kv = =

При этом скалярное значение перемножается с каждой компонентой вектора.

Если k > 1, то вектор увеличится, если k меньше единицы, но больше нуля - вектор уменьшится в длину. Если же k меньше нуля, то вектор поменяет направление.

Единичные векторы

Единичные векторы - это векторы длина которых равна единице. Заметьте, вектор с координатами <1,1,1> не будет равным единице! Нахождение длины вектора описано ниже по тексту.

Существуют так называемые орты - это единичные векторы, которые по направлению совпадают с осями координат. i - орт оси x, j - орт оси y, k - орт оси z.

При этом i = <1,0,0>, j = <0,1,0>, k = <0,0,1>.

Теперь мы знаем что такое умножение вектора на скаляр и что такое единичные векторы. Теперь мы можем записать v в векторной форме.

v = v x i + v y j + v z k , где v x , v y , v z - соответствующие компоненты вектора

Сложение векторов

Чтобы полностью разобраться в предыдущей формуле необходимо понять, как работает сложение векторов.

Тут всё просто. Возьмём два вектора v1 = и v 2 =

v 1 + v 2 =

Мы всего лишь складываем соответствующие компоненты двух векторов.

Разность вычисляется так же.

Это, что касается математической формы. Для полноты, стоит рассмотреть как будет выглядеть сложение и вычитание векторов графически.


Для того, чтобы сложить два вектора a +b . Нужно совместить начало вектора b и конец вектора a . Затем, между началом вектора a и концом вектора b провести новый вектор. Для наглядности смотрите второй рисунок (буква "а").

Для вычитания векторов нужно совместить начала двух векторов и провести новый вектор из конца второго вектора к концу первого. На втором рисунке (буква "б") показано как оно выглядит.

Длина и направление вектора

Сначала рассмотрим длину.

Длина - это числовое значение вектора, без учёта направления.

Длина определяется по формуле (для трёхмерного вектора):

корень квадратный из суммы квадратов компонент вектора.

Знакомая формула, не правда ли? В общем-то - это формула длины отрезка

Направление вектора определяется по направляющим косинусам углов образованных между вектором и осями координат. Для нахождения направляющих косинусов используются соответствующие компоненты и длина (картинка будет позже).

Представление векторов в программах

Представлять векторы в программах можно различными способами. Как с помощью обычных переменных, что не эффективно, так и с помощью массивов, классов и структур.

Float vector3 = {1,2,3}; // массив для хранения вектора struct vector3 // структура для хранения векторов { float x,y,z; };

Самые большие возможности при хранении векторов нам предоставляют классы. В классах мы можем описать не только сам вектор (переменные), но и векторные операции (функции).

Скалярное произведение векторов

Существует два типа перемножения векторов: векторное и скалярное.

Отличительная особенность скалярного произведения - в результате всегда будет скалярное значение, т.е. число.

Тут стоит обратить внимание вот на какой момент. Если результат данной операции равен нулю, значит, два вектора перпендикулярны - угол между ними 90 градусов. Если результат больше нуля - угол меньше 90 градусов. Если результат меньше нуля, угол больше 90 градусов.

Данную операцию представляет следующая формула:

a · b = a x *b x + a y *b y + a z *b z

Скалярное произведение - это сумма произведений соответствующих компонент двух векторов. Т.е. Берём x"ы двух векторов, перемножаем их, затем складываем с произведением y"ов и так далее.

Векторное произведение векторов

Результатом векторного произведения двух векторов будет вектор перпендикулярный этим векторам.

a x b =

Мы пока не будем обсуждать подробно эту формулу. К тому же она довольно трудна для запоминания. Мы ещё вернёмся к этому моменту после знакомства с определителями.

Ну и для общего развития полезно знать, что длина полученного вектора, равна площади параллелограмма построенного на векторах a и b .

Нормализация вектора

Нормализованный вектор - это вектор, длина которого равна единице.

Формула для нахождения нормализованного вектора следующая - все компоненты вектора необходимо разделить на его длину:

v n = v /|v| =

Послесловие

Как Вы, наверное, убедились, векторы не сложны для понимания. Мы рассмотрели ряд операций над векторами.

В следующих статьях раздела "математика" мы будем обсуждать матрицы, определители, системы линейных уравнений. Это всё теория.

После этого, мы рассмотрим преобразования матриц. Именно тогда Вы поймёте насколько важна математика в создании компьютерных игр. Данная тема как раз и станет практикой по всем предыдущим темам.

Такое понятие, как вектор, рассматривается практически во всех естественных науках, причем он может иметь совершенно разное значение, поэтому дать однозначное определение вектора для всех областей невозможно. Но попробуем разобраться. Итак, вектор - что такое?

Понятие вектора в классической геометрии

Вектор в геометрии - отрезок, для которого указано, какая из его точек является началом, а какая - концом. То есть, говоря проще, вектором называется направленный отрезок.

Соответственно, обозначается вектор (что такое - рассмотрели выше), как и отрезок, то есть двумя заглавными буквами латинского алфавита с добавлением сверху черты или стрелки, направленной вправо. Также его можно подписать строчной (маленькой) буквой латинского алфавита с чертой или стрелкой. Стрелка всегда направлена вправо и не меняется в зависимости от расположения вектора.

Таким образом, вектор имеет направление и длину.

В обозначении вектора содержится и его направление. Выражается это так, как на рисунке ниже.

Изменение направления меняет значение вектора на противоположное.

Длиной вектора называется длина отрезка, от которого он образован. Обозначается он как модуль от вектора. Это показано на рисунке ниже.

Соответственно, нулевым является вектор, длина которого равна нулю. Из этого следует, что нулевой вектор представляет собой точку, при чем в ней совпадают точки начала и конца.

Длина вектора - величина всегда не отрицательная. Иначе говоря, если есть отрезок, то он в обязательном порядке обладает некоторой длиной или же является точкой, тогда его длина равна нулю.

Само понятие точки является базовым и определения не имеет.

Сложение векторов

Существуют специальные формулы и правила для векторов, с помощью которых можно выполнить сложение.

Правило треугольника. Для сложения векторов по этому правилу достаточно совместить конец первого вектора и начала второго, используя при этом параллельный перенос, и соединить их. Полученный третий вектор и будет равен сложению двух других.

Правило параллелограмма. Для сложения по этому правилу необходимо провести оба вектора из одной точки, а затем провести из конца каждого из них другой вектор. То есть, из первого вектора будет проведен второй, а из второго - первый. В результате получится новая точка пересечения и образуется параллелограмм. Если совместить точку пересечения начал и концов векторов, то полученный вектор и будет результатом сложения.

Похожим образом возможно выполнять и вычитание.

Разность векторов

Аналогично сложению векторов возможно выполнить и их вычитание. Оно базируется на принципе, указанном на рисунке ниже.

То есть вычитаемый вектор достаточно представить в виде вектора, ему противоположного, и произвести расчет по принципам сложения.

Также абсолютно любой ненулевой вектор возможно умножить на какое-либо число k, это изменит его длину в k раз.

Помимо этих, существуют и другие формулы векторов (например, для выражения длины вектора через его координаты).

Расположение векторов

Наверняка многие сталкивались с таким понятием, как коллинеарный вектор. Что такое коллинеарность?

Коллинеарность векторов - эквивалент параллельности прямых. Если два вектора лежат на прямых, которые параллельны друг другу, или же на одной прямой, то такие векторы называются коллинеарными.

Направление. Относительно друг друга коллинеарные векторы могут быть сонаправленными или противоположно направленными, это определяется направлением векторов. Соответственно, если вектор сонаправлен с другим, то вектор, ему противоположный, противоположно направлен.

На первом рисунке показаны два противоположно направленных вектора и третий, который не коллинеарен им.

После введения вышеуказанных свойств возможно дать определение и равным векторам - это векторы, которые направлены в одну сторону и имеют одинаковую длину отрезков, от которых они образованы.

Во многих науках применяется еще и понятие радиус-вектора. Подобный вектор описывает положение одной точки плоскости относительно другой фиксированной точки (зачастую это начало координат).

Векторы в физике

Предположим, при решении задачи возникло условие: тело движется со скоростью 3 м/с. Это означает, что тело движется с конкретным направлением по одной прямой, поэтому данная переменная будет величиной векторной. Для решения важно знать и значение, и направление, так как в зависимости от рассмотрения скорость может равняться и 3 м/c, и -3 м/с.

В общем случае вектор в физике используется для указания направления силы, действующей на тело, и для определения равнодействующей.

При указании этих сил на рисунке их обозначают стрелками с подписью вектора над ним. Классически длина стрелки так же важна, с помощью нее указывают, какая сила действует сильнее, однако это свойство побочное, опираться на него не стоит.

Вектор в линейной алгебре и математическом анализе

Элементы линейных пространств также называются векторами, однако в данном случае они представляют собой упорядоченную систему чисел, описывающих некоторые из элементов. Поэтому направление в данном случае уже не имеет никакой важности. Определение вектора в классической геометрии и в математическом анализе сильно различаются.

Проецирование векторов

Спроецированный вектор - что такое?

Довольно часто для правильного и удобного расчета необходимо разложить вектор, находящийся в двухмерном или трехмерном пространстве, по осям координат. Данная операция необходима, например, в механике при подсчете сил, действующих на тело. Вектор в физике используется достаточно часто.

Для выполнения проекции достаточно опустить перпендикуляры из начала и конца вектора на каждую из координатных осей, полученные на них отрезки и будут называться проекцией вектора на ось.

Для подсчета длины проекции достаточно умножить его изначальную длину на определенную тригонометрическую функцию, которая получается при решении мини-задачи. По сути, есть прямоугольный треугольник, в котором гипотенуза является исходным вектором, один из катетов - проекцией, а другой катет - опущенным перпендикуляром.

1. Сложение. Пусть а и b – два вектора. От произвольной точки О отложим вектор ОА = а, а от получившейся точки А – вектор АВ = b. Вектор ОВ называется суммой a + b векторов а и b (рис.6), а операция нахождения суммы векторов – их сложением.

Проверим, что сложение векторов определено корректно, т.е. сумма векторов не зависит от выбора точки О. Для этого возьмем любую другую точку Q и отложим векторы QC = a и CD = b. Поскольку QC = ОА = а, по признаку равенства двух векторов (1.8) получаем, что OQ = AC. Аналогично, из равенства AB = CD = b вытекает, что AC = BD. Следовательно, OQ = BD, и, вновь применяя признак (1.8), получаем OB = QD, что и требовалось доказать (рис.7).

Прямо из определения суммы двух векторов вытекает правило треугольника:

(2.1) для любых трех точек О, А и В ОА + АВ = ОВ.

Кроме того, как известно из школьного курса геометрии, для любых трех точек О, А и В длина отрезка ОВ не превосходит суммы длин отрезков ОА и АВ, причем равенство |ОВ| = |ОА| + |АВ| достигается только тогда, когда точка А лежит на отрезке [ОВ]. Это неравенство часто называют неравенством треугольника. Определение суммы векторов позволяет записать его в векторной форме:

(2.2) |а + b| |a| + |b| .

Равенство в (2.2) достигается тогда и только тогда, когда векторы а и b сонаправлены, а в остальных случаях неравенство является строгим. Записывать равенство |а+b| = |a|+|b| для произвольных векторов – грубая ошибка.

2. Основные свойства сложения векторов. К ним относят:

(C1) Для любых трех векторов a, b и c (a+b)+c = a+(b+c) (ассоциативность).

(С2) Для любых двух векторов a и b a+b = b+a (коммутативность).

(С3) Для любого вектора а а+0 = а.

(С4) Для любых двух точек А и В АВ+ВА = 0.

В

виду последнего свойства векторы ВА и АВ называются противоположными. Вектор, противоположный вектору а, обозначается "–а".

Свойства (С3) и (С4) вытекают непосредственно из правила треугольника (проверьте!). Чтобы доказать (С2), от произвольной точки О отложим векторы ОА = а и ОС = b, а от точки А – вектор АВ = b (рис.8). Поскольку ОС = АВ, по признаку равенства двух направленных отрезков получаем, что ОА = СВ. Но ОА = а, поэтому и СВ = а. Заметим теперь, что по правилу треугольника вектор ОВ можно представить и как ОА+ОВ = а+b, и как ОС+СВ = b+a. Получается, чтоа + b = b + a = ОС, что и требовалось доказать.

Докажем свойство (С1). Для этого последовательно отложим векторы ОА = а, АВ = b и ВС = с. По определению сложения векторов (a+b)+c = ОВ+ВС, а a+(b+c) = ОА+АС. Но ОВ+ВС = ОА+АС = ОС (рис.9).

Заметим, что на рис.8 OC = AB . Поэтому справедливо

(2.3) Правило параллелограмма: Сумма неколлинеарных векторов а и b равна диагонали ОВ параллелограмма ОАВС, построенного на векторах 2 ОА = а и ОС = b.

Кроме того, из проведенного выше доказательства ассоциативности получается

(2.4) Правило многоугольника. Чтобы сложить несколько векторов, взятых в определенном порядке, надо отложить их друг за другом так, чтобы конец каждого вектора служил началом следующего, а затем соединить начало первого с концом последнего.

Мы доказали это правило только для случая трех векторов, но проведенное рассуждение без труда переносится на любое число слагаемых.

П

оскольку у нулевого направленного отрезка начало совпадает с концом, из правила многоугольника вытекает полезное

(2.5) Правило замкнутой цепочки. Сумма нескольких векторов равна нулю тогда и только тогда, когда при последовательном их откладывании они образуют замкнутую цепочку, т.е. конец последнего совпадает с началом первого.

(2.6) Упражнение. Докажите правило параллелепипеда: чтобы сложить три вектора, не параллельные одной плоскости, надо отложить их из одной точки О, достроить три получившихся отрезка до параллелепипеда и провести из точки О диагональ этого параллелепипеда, которая и будет искомой суммой (рис.10).

Ассоциативность сложения векторов показывает, что сумма трех векторов, взятых в определенном порядке, не зависит от того, сложим ли мы сначала два первых вектора, а потом прибавим к ним третий, или сначала найдем сумму второго и третьего векторов, а потом прибавим ее к первому. Это означает, что мы можем записывать сумму трех векторов как а+b+с, не задумываясь, каким образом расставлять в ней скобки. В курсе алгебры будет показано, что если это свойство выполняется для трех слагаемых, то оно выполняется и для любого их числа, то есть мы можем, не заботясь о способе расстановки скобок, записывать любую векторную сумму а+b+с+...+d. А свойство коммутативности (С2) показывает, что мы можем также, не меняя этой суммы, произвольным образом переставлять в ней слагаемые. В этом и состоит смысл ассоциативности и коммутативности.

3

. Вычитание векторов. Разностью a–b векторов а и b называется такой вектор х, что x+b = a. Операция нахождения разности векторов называется их вычитанием.

Отложим от произвольной точки О векторы ОА= а и ОВ=b. Очевидно, единственным вектором, который в сумме с ОВ дает ОА, является вектор ВА. Таким образом,

(2.7) у любых двух векторов есть разность, и только одна. Чтобы построить ее, надо отложить векторы от одной точки и соединить конец второго с концом первого (рис.11).

З

аметим еще, что на рис. 11 ВА = ВО+ОА. Это значит, что

      a–b = a+(–b).

Иными словами, вычесть один вектор из другого – это все равно, что сложить первый вектор с вектором, противоположным второму.

Пусть векторы а и b неколлинеарны. Тогда точки О, А и В образуют треугольник. Если достроить его до параллелограмма ОАСВ, то в нем диагональ
будет изображать сумму а+b, а диагональ
– разность а–b (рис.12). Это полезное дополнение к правилу параллелограмма.

Равенство (2.8) можно было доказать и чисто алгебраически. В самом деле, если x = a+(–b) , то x+b = a+(–b)+b = а+0 = a. Также алгебраически можно показать, что других значений у разности а–b нет: x+b = a (x+b)+(–b) = a+(–b) x+(b+(–b)) = a+(–b) x+0=a+(–b) x = a+(–b). Мы намеренно записали все эти преобразования подробно, чтобы показать, что все они опираются только на основные свойства сложения (С1)-(С4) (проверьте!). В общей теории векторных пространств, с которой вы познакомитесь в курсе алгебры, эти свойства принимаются за аксиомы сложения векторов, а все остальные свойства сложения выводятся из них.

4. Умножение вектора на число. Умножением вектора на число называется операция нахождения произведения вектора на число. Произведение ненулевого вектора а на число х – это вектор, обозначаемый "ха" и удовлетворяющий следующим двум условиям:

(П1) | ха | = |х||а| ; (П2) ха  а, если х 0, и ха  а, если х<0.

Произведение нулевого вектора на любое число по определению считается равным 0.

Условие (П1) остается справедливым и при x = 0, но условие (П2) в этом случает нарушается при х<0 (из-за чего случай нулевого вектора и приходится рассматривать отдельно). Однако, при любых а и х векторы а и ха коллинеарны (почему?).

Заметим, что ха = 0 |ха| = 0 |х||а| = 0 |х| = 0 или |а| = 0 х = 0 или а = 0. Значит,

(2.9) произведение вектора на число равно нулю тогда и только тогда, когда либо число, либо вектор равны нулю.

Пусть даны не равные нулю число х и вектор а. От произвольной точки О отложим вектор ОА=а и попробуем построить вектор OX = ха. Так как векторы а и ха должны быть коллинеарными, отрезок
обязан лежать на прямой (ОА), а его длина по условию (П1) должна равняться |х||а|. Таких отрезков ровно два, причем один из них (назовем его
) сонаправлен с
, а другой (назовем его
) направлен противоположно
(рис.13). Возвращаясь к условию (П2), видим, что
=
при x > 0, и
=
при х < 0.

Т

аким образом, любой вектор можно умножить на любое число, причем результат однозначно определен.

К основным свойствам умножения векторов на числа относят следующие:

(У1) Для любого вектора а 1а=а (т.е., умножение на 1 не изменяет вектора).

(У2) Для любых чисел х, у и вектора а х(уа) = (ху)а (ассоциативность).

(У3) Для любых чисел х, у и вектора а (х+у)а = ха+уа (дистрибутивность умножения относительно сложения чисел).

(У4) Для любых числа х и векторов а и b х(a+b) = xa + xb (дистрибутивность умножения относительно сложения векторов).

Первое из этих свойств вытекает непосредственно из определения (проверьте!). Доказательства остальных можно найти на стр. 14-16 учебника Л.С. Атанасяна и В.Т. Базылева “Геометрия” (ч.1).

Отметим еще такие свойства умножения вектора на число:

(2.10) Если вектор а – ненулевой, то а/|a| – сонаправленный с вектором а единичный вектор. 3

В самом деле, векторы а и а/|a| сонаправлены (ибо 1/|а| > 0) и |а/|a|| = |а|/|а| = 1.

(2.11) (–1)а = –а.

Действительно, по определению умножения вектора на число векторы (–1)а и а противоположно направлены, а их длины равны.

5. Признаки коллинеарности.

(2.12) Признак коллинеарности вектора ненулевому вектору. Вектор b коллинеарен ненулевому вектору а тогда и только тогда, когда существует такое число t , что b = t а. При этом если векторы а и b сонаправлены, то t = |b| / |a|, а если они противоположно направлены, то t = – |b| / |a|.

Мы уже отмечали, что векторы а и tа всегда коллинеарны. Обратно, возьмем ненулевой вектор а и коллинеарный ему вектор b. Если они сонаправлены, положим t = |b|/|a|. Тогда |tа| = |t||а| = (|b|/|a|)|а| = |b|, и вектор tа сонаправлен с а, а, значит, и с b. Стало быть, tа = b по признаку 1.7. Если же а  b, положим t = –|b|/|a|. И снова |tа| = |t||а| = (|b|/|a|)|а| = |b|, а векторы tа и b, направленные противоположно вектору а, по (Н5) сонаправлены между собой. Значит, и в этом случае tа = b.

Оговорка насчет того, что вектор а – ненулевой, иногда бывает неудобна. Тогда можно использовать такой

(2.13) Признак коллинеарности двух векторов. Два вектора коллинеарны тогда и только тогда, когда один из них можно выразить через другой с помощью умножения на число.

Для случая, когда хотя бы один из двух данных векторов не равен нулю, это доказано выше. Если же оба вектора нулевые, то, во-первых, они коллинеарны, а, во-вторых, любой из них можно получить из другого умножением на любое число, так что и в этом случае все в порядке.

6. Сохранение параллельности при операциях над векторами.

(2.14) Лемма о параллельности. Если два вектора параллельны некоторой прямой (плоскости), то той же прямой (плоскости) параллельна и их сумма. Если вектор параллелен прямой (плоскости), то той же прямой (плоскости) параллельно и его произведение на любое число.

Пусть векторы а и b параллельны данной прямой (плоскости). Отложим от произвольной её точки О векторы ОА = а и АВ = b. Тогда точки А и В тоже будут лежать на этой прямой (плоскости). Значит, там будет лежать и отрезок ОВ, изображающий сумму а+b, что и означает ее параллельность данной прямой (плоскости).

Возьмем теперь любое число х, и отложим от той же точки О вектор ОС = ха. Если а = 0, то и ха = 0, а нулевой вектор параллелен любой прямой и плоскости. Если же нет, то отрезок ОС, изображающий вектор ха, будет целиком лежать на прямой ОА, а, значит, и на данной прямой (плоскости). Тем самым вектор ха будет параллелен этой прямой (плоскости).

Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются:

Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0 .

Пример. Пусть в двухмерном пространстве начало вектора имеет координаты A (12,6) , а конец вектора - координаты B (12,6). Тогда вектор является нулевым вектором.

Длина отрезка AB называется модулем (длиной , нормой ) вектора и обозначается |a |. Вектор длины, равной единице, называется единичным вектором . Кроме модуля вектор характеризуется направлением: вектор имеет направление от A к B . Вектор называется вектором, противоположным вектору .

Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными , если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными , если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.

Два вектора называются равными если они имеют равные модули и одинаково направлены. На рисунке Рис.2 векторы равны т.к. их модули равны и имеют одинаковое направление.

Векторы называются компланарными , если они лежат на одной плоскости или в параллельных плоскостях.

В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:

(1)

где x 1 , x 2 , ..., x n координаты конечной точки вектора x .

Вектор, записанный в виде (1) называется вектор-строкой , а вектор, записанный в виде

(2)

называется вектор-столбцом .

Число n называется размерностью (порядком ) вектора. Если то вектор называется нулевым вектором (т.к. начальная точка вектора ). Два вектора x и y равны тогда и только тогда, когда равны их соответствующие элементы.

Стандартное определение: «Вектор - это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением - «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение - векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля - тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B . Конечный результат - его перемещение из точки A в точку B , то есть перемещение на вектор .

Теперь понятно, почему вектор - это направленный отрезок. Обратите внимание, конец вектора - там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы - новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует - ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым - вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат - той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа - ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора - по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий - перемещение из А в F .

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание - перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов - силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике , знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы - полезнейший математический инструмент. В этом вы убедитесь на первом курсе.